New Spin on an Old Theory Brings Researchers One Step Closer to an HIV Vaccine

Testing and experimentation to find an HIV vaccine has been ongoing for nearly thirty years. Over the past three decades, there have been numerous approaches to the subject in order to find one that might work. One of these includes the thought of targeting how the virus attaches itself to a healthy cell. It is hoped that by doing this, an attack from the immune system would target and eliminate the threat, thereby avoiding infection. Recent experimentation in Europe yielded some promising results.

By taking an envelope protein called gp41—which is part of HIV—and engineering it, researchers were able to come up with one way of slowing or even preventing an infection. What makes this protein so special is that it is responsible for attaching itself to human cells. By preventing this bond, it is hoped a successful vaccine can be developed.

This idea is not a new one. It has been extensively researched. What makes this approach novel, however, is the engineering behind it. How the protein is designed by engineers enables it to potentially alert the immune system. For example, it can attach to T-cells and trigger an immediate response. This, in turn, can aid in ridding the body of the virus.

There is a setback with the design, though. The problem lies in the fact that not all immune cells are infected via the gp41 protein. This leaves certain cells open to attack. While this needs to be addressed, it does not mean all is lost. Researchers are hoping to create a vaccine that tackles the problem in different ways. The use of gp41 is one way, and perhaps when combined with another method, an effective vaccine can be produced. When this does happen, it will be a major victory in the battle against HIV.