Understanding Antibodies: The Next Step in HIV Vaccine Research

Researchers are looking at certain antibodies that seem to prevent the infection of HIV. They recognize the need to know what kind of response they need to trigger with a vaccine to make it the most effective. Understanding antibodies may be the next step in HIV vaccine research.

Based on past studies, many scientists have thought if the V1V2 regions of HIV were removed, the virus would be more susceptible to attacks by the body’s immune system, i.e. immunoglobulins, or antibodies, thus decreasing the viral load in the body. New studies, however, are finding that there is only one type of these immunoglobulins, IgG3, that can possibly lower the risk of infection by triggering an antiviral response.

Another study found that immunoglobulin G3, when used in vaccines, was involved in the HIV elimination process. Researchers found that the number of the antibody V1V2- IgG3 in the blood of the patient who had received the vaccine went down. The efficiency of the vaccines tested in this trial also went down by almost 50 percent over a three-and-a-half year period. To sum, this particular study showed that the vaccine scientists dubbed RV144 had some antibodies that could coordinate more than one organized process to get rid of HIV. These processes came mostly through the V1V2-IgG3 antibodies.

Further research is required to truly test the effectiveness of IgG3 antibodies in preventing HIV infection. Scientists also want to uncover the connection between the rapid decline in the amount of IgG3 and the efficiency of the trial vaccine. Understanding antibodies may unlock the key to discovering an effective HIV vaccine to eliminate the virus by building on the foundation laid by the success or failure of the previous test.