HIV is adept at making its way through cellular defenses in order to overtake the cell. Just how this happens has been the center of study for a long while. A better understanding of the processes involved can open doorways to keeping infections from spreading, or even occurring in the first place.

Cellular Infiltration and Cyclophilin A

The protein named cyclophilin A carries out numerous duties. It plays a key role in immune response, particularly when it comes to inflammation. Folding and sending off new proteins is also on its list of tasks. This protein is found in multiple tissues throughout the body. While much good is accomplished by cyclophilin A, too much of a good thing can be bad. In this case, conditions ranging from asthma to cancer can be responsible for the malfunction or overproduction of the protein. How does this relate to HIV and cellular infiltration?

HIV has an outer shell made up of proteins called a capsid. It is not known how, but the virus can dupe the cyclophilin A into creating a cover. This cloak binds to the HIV, which is then escorted into the nucleus of its cellular host. Once inside the center of the cell, the virus commandeers it. HIV then begins to copy its own genetic code, using the cellular mechanisms it overtook.

The picture painted by this information seems bleak, but there is a catch to the system. Like anything, balance is the key to success. The delicate systems cooperating together are likewise balanced in their own way. For example, researchers have found that too much of the protein can cause issues when binding to the virus. This can lead to a failed mission for the HIV. On the other hand, too little cyclophilin A, and the virus can be detected and destroyed by the immune system.

Now, scientists have the task of determining how best to use this new information in the fight against HIV infection. Having a better understanding of the inner workings can prove vital to developing new strategies against the virus, and the continued research is very promising.