A doctor and a nurse looking at simulations on a computer.

A new study has used simulations to follow how HIV infects the body.

It has become increasingly important for scientists to understand the life cycles of viruses such as HIV, Zika, and Ebola. Learning how these microbes develop aids researchers in their quest for effective vaccines and treatments. Interrupting the vital processes is one way to curb or halt infection. Efforts to probe deeper into the maturing of HIV has yielded helpful insight.

Watching HIV Mature Through Computer Simulations

Computer simulations of HIV were used to follow the maturing process of the virus to see how it infects the host. The biological system that was computer simulated broadened understanding, and possibly hastened the production of more effective antiviral drugs. While the simulations are not real life, scientists admit it comes very close to predicting actual events. Identifying stages of viral maturation is significant to researchers. With the computer-generated model, two main aspects of this process were identified.

Observing the Processes

The capsid is a protein-derived capsule that is crucial to viral development, and correlates to its ability to infect a host. They observed how it is formed, and that it contains the virus’ genetic material. When the virus infects a cell, a bud is formed on the surface of that cell. Within this particle are proteins and genetic material. This bud will break free and travel through the body. During this traveling time, the proteins are broken up. The resulting pieces pair up, and as they do, the capsid is formed and surrounds the RNA.

As this process occurs, there is constant motion and flipping around. According to researchers, this happens so that proteins are correctly oriented when they pair up, and it helps control the rate of the building process.

The complexity of these described processes had to be simplified for the simulations. However, the more information that can be gathered and programmed into the computer models, the more exact they become. Scientists are confident that similar models could be observed for other types of viruses that also have a capsid. The Ebola and Zika viruses are both included in this category. With enough information and understanding, developing ways to effectively treat these resilient infections may become possible in the future.